A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons
نویسندگان
چکیده
Two-dimensional (2D), supramolecular self-assembly at surfaces is now well-mastered with several existing examples. However, one remaining challenge to enable future applications in nanoscience is to provide potential functionalities to the physisorbed adlayer. This work reviews a recently developed strategy that addresses this key issue by taking advantage of a new concept, Janus tecton materials. This is a versatile, molecular platform based on the design of three-dimensional (3D) building blocks consisting of two faces linked by a cyclophane-type pillar. One face is designed to steer 2D self-assembly onto C(sp(2))-carbon-based flat surfaces, the other allowing for the desired functionality above the substrate with a well-controlled lateral order. In this way, it is possible to simultaneously obtain a regular, non-covalent paving as well as supramolecular functionalization of graphene, thus opening interesting perspectives for nanoscience applications.
منابع مشابه
Surface-confined self-assembled Janus tectons: a versatile platform towards the noncovalent functionalization of graphene.
A general strategy for simultaneously generating surface-based supramolecular architectures on flat sp(2) -hybridized carbon supports and independently exposing on demand off-plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D ...
متن کاملSupramolecular fabrication of multilevel graphene-based gas sensors with high NO2 sensibility.
This study reports the supramolecular assembly of a silver nanoparticle-naphthalene-1-sulphonic acid-reduced graphene oxide composite (Ag-NA-rGO) and its utilization to fabricate a highly sensitive and selective gas sensor. The prepared supramolecular assembly acted not only as a non-covalent functionalization platform (π-π interaction) but was also an excellent scaffold to fabricate a highly s...
متن کاملPost-Assembly Functionalization of Supramolecular Nanostructures with Bioactive Peptides and Fluorescent Proteins by Native Chemical Ligation
Post-assembly functionalization of supramolecular nanostructures has the potential to expand the range of their applications. We report here the use of the chemoselective native chemical ligation (NCL) reaction to functionalize self-assembled peptide amphiphile (PA) nanofibers. This strategy can be used to incorporate specific bioactivity on the nanofibers, and as a model, we demonstrate functi...
متن کاملNanostructuring graphene for controlled and reproducible functionalization.
The 'graphene rush' that started almost a decade ago is far from over. The dazzling properties of graphene have long warranted a number of applications in various domains of science and technology. Harnessing the exceptional properties of graphene for practical applications however has proved to be a massive task. Apart from the challenges associated with the large-scale production of the mater...
متن کاملSelf-Assembly of Hydrofluorinated Janus Graphene Monolayer: A Versatile Route for Designing Novel Janus Nanoscrolls
With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are pro...
متن کامل